Cudo decentrali

sed compute ecosystem

Technical Paper

Cudo Ventures

October 2020

Version 1.3

Abstract

This paper describes technical components of Cudo’s distributed computing platform and of

the CUDOS network, a multi-chain layer 2 solution for blockchains. The Cudo platform provides

cloud-like services at affordable cost while rewarding users who contribute to the network. This

document explains various components of the platform including benchmarking, job life cycle,

the reputation system and the economic model, as well as privacy and security features. For

transparency and security purposes, the Cudo compute network implements blockchain tech-

nology for payments and staking. Furthermore, the Cudo platform can be integrated into the

CUDOS network, in order to provide further compute capacity to blockchains. This paper also
outlines the token model for CUDOS, an ERC20 token used initially for staking and discounts
on the platform, as well as for powering the CUDOS network.

Contents
1 Introduction
2 Cloud platform overview

2.1 First class entities
2.2 Platform components

Current Cudo product

Benchmarking and scheduling

Compute workload types

51 Apps
5.2 Custom compute workloads

5.4 Ingest function
5.5 Egress function
lidation module

Job life cycle

© © 00 0 o N

7 Error handling 11

8 Security and reputation 11
8.1 Life cycle of an SGX/SEV-enabled job 12
8.2 Reputation system 13

9 Cudo’s compute platform blockchain side 14

10 Pricing engine 15

11 Cudo token: D 15
11.1 Staking to receive a discount infees 16
11.2 Staking to qualify for jobs oL L 18
11.3 Staking mechanism L L L Lo 18

12 CUDOS network 18
12.1 TVIEW . v o vt o e e e e e e e e e e e e 19
2.2 CUDOS nodes o v i 20

12.2.1 Identifying nodes 20
12.2.2 NSENSUS « « « « v v v v e e e e e e e e e e e e e 20
1 udo and D connection 20
14 Summary 22

1 Introduction

Cloud services provide essential tools for enterprises, as proven by the amount of new
data centres operated by hyperscale providers [1]. However, the associated economical
and ecological costs that this infrastructure involves are too great [2, 3], and only set to
grow considering the increasing demand for these services [4]. Furthermore, the industry
is now facing physical limitations [5]. There is a need for a new, cheaper and greener
solution.

Similarly, the novel blockchain technology [6] is in need of a scaling solution. Proof-
of-Stake (PoS) is an essential step forward, as Proof-of-Work (PoW) networks are not
scalable and have a major ecological impact [7]. While Ethereum 2.0 with its sharding
solution may solve most of the issues [8], its progress is slow, which has caused other
projects to emerge [9]. However, there is no definitive solution yet, nor is there a clear
path for the technology’s mass-adoption.

In order to allow providers of cloud services to keep up with the increasing demand
while reducing the pace of construction of new data centres, a solution would be to
use already existing computing power which is currently unutilised. With billions of
computing-capable devices owned by the general public [10, 11, 12] which are idle most
of the time [13], and with the sharing economy being part of our everyday lives [14, 15],
using people’s computers and idle data centre time for this purpose and rewarding them
for supplying the equipment to the network stands out as a way forward for the industry.
Connecting this cloud alternative, in phased stages, to emerging technologies such as
blockchain may be the required breakthrough to disrupt both markets and move society
towards technological decentralisation.

The idea of using users computing power for a greater goal is not new. The Large
Hadron Collider in CERN for instance has been using grid computing for years to
analyse particle collision data [16], and anyone is welcome to volunteer their computing
power to donate idle time to the LHC [17]. In this sense, distributed computing is
just promoting and moving this idea outside of academia and to the general public.
SETI@home [18] is another example.

With all this in mind, Cudo Ventures is adding compute and blockchain workloads
to the current product with a distributed computing platform, as well as entering the
blockchain space with the CUDOS network. This paper extends the general discussion
of the platform given in the whitepaper [19], by providing technical details on how
the platform functions. This technical paper is organised as follows: section 2 gives an
overview of the cloud platform, and introduces some of its main components. The Cudo
platform, an existing mining application which can be seen as a necessary preparatory
step for its compute extension, is briefly summarised in section 3.

Sections 4 through 8 cover different aspects of the Cudo compute platform. Section 4
explains benchmarking of the connected devices and the platform’s job scheduler. The
types of workloads in the platform are described in section 5, and section 6 details the
life cycle of a given compute job. In section 7 details are given on how failed jobs are
handled, connecting with the reputation system presented in section 8.

Cudo compute initially uses the Ethereum network for some aspects, as explained
in section 9. The payment process is detailed in sections 10 and 11, where the CUDOS
token is also introduced. After the blockchain side of the cloud platform is explained,
section 12 describes how the on-chain CUDOS network works to support offloading
compute jobs via smart contracts. The connection between the Cudo platform for com-
pute jobs and the blockchain CUDOS network is discussed in section 13. Last, section
14 gives a summary of the platform, and discusses some of the future developments for
it.

2 Cloud platform overview

Cudo Ventures is building a decentralised grid compute network, with the architecture
presented in figure 1.

2.1 First class entities

The system comprises the following first class entities:

Developers The main contributors to the app marketplace. Developers are encour-
aged and rewarded to develop apps using Cudo’s guidelines and underlying technology.

Consumers Representing the demand side of the network, consumers provide work-
loads to the network and purchase compute. These entities push jobs into the platform
either through an app or directly via the Cudo compute marketplace.

Suppliers Suppliers provide compute to the network either through mining or pro-
cessing computational tasks. Suppliers run the Cudo application which intelligently

[Infrastructure management/app] App
/ l \ i| marketplace |
/—< >— CONSUMER
P Other Non-blockchain Compute [}
Mining) ; teto] ;
pools blockchain compute marketplace
workloads workloads R —
Virtual Definition
container and
sandbox jobs
Profit /
| |
engine engine

b

\ Result
Job scheduler validator

Cudo

/ storage

DHDQ

Cudo compute clients
(SUPPLIERS)

Figure 1: Diagram showing the architecture of the Cudo compute platform. It
allows mining work, other blockchain workloads such as smart contracts and
non-blockchain jobs, the focus of this paper. In this last case, consumers send
the jobs directly or through an available app in the Cudo marketplace. The job
is then processed and distributed to the different Cudo compute suppliers, which
include laptops, PCs, servers, mining rigs, ASICs, FPGAs and, in the future,
mobiles. The performance engine periodically benchmarks all clients to ensure
that workloads are distributed correctly. Clients can also use or provide storage
services on the network. Once the result is validated, payment is received by
the supplier, and the output is returned to the consumer.

switches between types of workload based on various factors, detailed later in this pa-
per. This process is performed in a transparent manner so that suppliers are aware of
the nature of the current workload being performed.

Workloads Generic packages of work created by the Cudo platform and processed
by suppliers. These may represent mining tasks, compute tasks or any other type of
work the platform supports.

Cudo platform The Cudo platform is a decentralised compute ecosystem, currently
supporting cryptocurrency mining workloads. The individual components of the com-
pute platform are outlined in the next section.

2.2 Platform components

The primary components of the Cudo compute platform comprise those depicted in
figure 1. Each component is outlined below, with Kubernetes [20] used to manage and
deploy the full set.

Mining pools Mining pools allow workers to share their processing power over a
network to split the block reward in proportion to the amount of work they contribute.
Mining pool workloads are always available. For more details see section 3.

Other blockchain workloads Smart contract platforms, such as Ethereum, are
mostly suited to run smart contracts only. Running complex workloads is highly ineffi-
cient due to the need for the network to reach consensus. Other blockchain workloads
in the figure represent complex workloads offloaded from smart contracts, similar to the
outsourcing of knowledge to oracles. The connection of these workloads for the Cudo
platform with the CUDOS network is described in section 13.

Non-blockchain compute workloads Jobs from this workload type are the result
of consumers ordering compute jobs either via a third party application or directly via
their own process. Jobs are comprised of a virtual container sandbox and the job’s
associated definition as explained further in section 5.

Performance engine The performance engine periodically schedules workloads to
benchmark the performance characteristics of the supplier’s hardware, including com-
putation, network and storage speed, latency and availability. The benchmark is used
to determine how much the worker charges for workload execution per second. For
further details see section 4.

Profit engine The profit engine calculates the profitability of workloads based on
network and market conditions. For cryptocurrency mining, profitability is a function
of network characteristics, such as the block reward, block time and network difficulty.
Section 4 discusses further how job profitability is derived.

Job scheduler The job scheduler assigns pending workloads to workers based on
the worker’s availability and workload constraints. These constraints include hardware
support, geographic location, minimum reputation and security certification. The job
scheduler attempts to minimise the total cost of workloads being executed by comparing
all the eligible workers for each job.

Payment The payment element is responsible for unlocking the stake and finalising
a supplier’s transaction in the case of a successful job, as determined by the result
validator. The role of the transaction engine, which is part of the payment component,
is detailed in the job life cycle description in section 6 and in figure 2.

Result validator The result validator runs the validation module for a given job type
after its result has been uploaded to the Cudo platform by a supplier. The different
types of possible validations are expanded upon in section 5.6.

Cudo Storage Cudo storage is a planned product enabling consumers to utilise the
spare storage capacity of suppliers.

3 Current Cudo product

The Cudo platform is currently live and supports a single workload — cryptocurrency
mining. This section describes the current version of the product. The following sections
explain Cudo compute, the flagship application which extends the current one to a wide
range of workloads, as well as its parallel blockchain part, the CUDOS network.

Supplier-side software A lightweight executable running on the supplier’s hardware.
Initially the software does not contain any mining or compute task knowledge, as this
is delivered by the Cudo platform.

Benchmarking After installation, the software determines the specifications of the
machine. These include details pertaining to GPU, CPU, memory and storage media,
as well as network capabilities. In cases where the hardware is not already known to
Cudo, such as when a new graphics card is released, the hardware is benchmarked by
the software and the results returned to Cudo.

Since the mining process benchmarks while it runs, the process for unknown hard-
ware is simply to iterate through and complete available work until further information
is known.

Profitability and scheduling The Cudo platform determines the best mining task
for an individual supplier by iterating through the available mining tasks, checking the
market price of those assets and calculating the value that a supplier’s work would
generate during a given time window. This check is performed approximately every six
hours and may eventually be completed at more regular intervals. In most cases the
outcome is that the current tasks remain the most profitable.

In the case that the most profitable task is not the one the supplier is already running,
the Cudo platform provides the necessary software components required to switch to it.

Payouts Work from each supplier is contributed to the Cudo pool, after which the
resulting payout is distributed accordingly. The payouts correspond to the amount
of work contributed by each supplier, which is calculated as a percentage of the total
amount of work contributed by all suppliers. Payouts can currently be made in Bitcoin,
Ethereum, Monero or Ravencoin, with the conversion performed close to the point of
work (as opposed to the point of payout).

Cudo’s cryptocurrency mining application also supports ASIC mining, for which the
above benchmarks and configurations are not necessary, but which benefits from auto-
tuning and other tailored approaches.

4 Benchmarking and scheduling

The benchmarking process is based on that of the current Cudo product, as detailed
above. The client software downloads one job per piece of hardware which needs to be

benchmarked, usually GPU, CPU, memory, storage media and networking capabilities.
A score is derived for each piece of hardware based on how long the machine takes to
run the benchmarking job.

The result of this process is a vector of name-value pairs which represents the pro-
cessing power of the supplier’s machine and is used in the Cudo Performance Engine.

Automated switching between job types After each job is finished, the platform
determines the next-most profitable job for the supplier. Mining workloads are always
available and form the default base workload. The most profitable mining task is
calculated using the benchmarking process explained above.

If compute jobs are available, the Cudo platform assesses the suitability of the job
for the supplier by checking a series of constraints. These include:

o Reputation (e.g. reliability)

o Security level (e.g. ISO certification)

e Location

o Performance (e.g. CPU IPS, GPU FLOPS, storage IOPS — see section 10)

o Capabilities (e.g. memory availability, storage availability, instruction set support)
o Availability (e.g. uptime, periods online).

If the supplier satisfies the constraints, the Cudo platform allocates the job to the
supplier, usually priced at least three to four times the mining revenue for that supplier.
See section 10 for a more in depth explanation of pricing. If multiple jobs are available,
the Cudo platform delivers the most profitable job to the supplier.

The most common job type consists of batch work with a bounded duration, pro-
ducing an output on completion. This often takes an input that can be divided to run
asynchronously across multiple suppliers, with the outputs later recombined into the
final product.

Workloads such as deep learning, big data and signal processing are suited to parallel
batch operation across most types of suppliers. Vertically-scaling work involving for ex-
ample relational databases is also properly handled and paired to appropriate suppliers,
usually data centres.

5 Compute workload types

There are three workload types which generate generic workloads to be processed in a
uniform manner by the Cudo platform.

5.1 Apps
Apps are created either by Cudo or (more frequently) by third party developers. Each
app must define:

o A process for taking input (such as a video in the case of a transcoding app), which
may be defined via a web Ul or via an API.

e A workload image, usually created from the base image guidelines provided by
Cudo.

o A configuration customisation that extends the base image to make it workload
specific, typically in one of the following forms:

— Scripting to download, install and set up software inside an operating system
image e.g. Bash or PowerShell.

— Container build instructions to create a template image e.g. Dockerfile.

— Upload of a complete preconfigured image e.g. an OVF appliance or a Node.js
package.

o An estimation component (optional) responsible for estimating the execution time
of a job based on the input.

o A validation component (optional) responsible for any app-specific automated val-
idation that can be used to verify a job has been completed properly.

« An ingest function (detailed in section 5.4).

« An egress function (detailed in section 5.5).

5.2 Custom compute workloads

Separate to using an app, consumers have the option to generate workloads directly.
Similar to the apps, any custom compute workload should comprise of:

1. A workload image
2. An estimation component (optional)
3. A validation component (optional)

4. An egress function.

5.3 Test workloads

Used by Cudo periodically to validate suppliers, tests are workloads for which the
expected output is known. Tests have the following components:

1. A workload image

2. An expected output

3. A validation component
4. An egress function.

After a job result is uploaded by the egress function, the validation component checks
that the delivered work matches the expected output. Test workloads are used to
measure the performance, integrity and availability of a device.

5.4 Ingest function

Each job type has a UI or API responsible for taking input. The ingest function produces
a workload image from a given input. This logic may include support for splitting the
job into sub-work packages for parallel processing.

Consider the following video transcoding example. At input, the source video is
scanned at ingest and split at certain key frames. Each of the split sections is then
packaged as a discrete job. Each video section is sent to an individual supplier, and the
video transcoding operations run in parallel.

5.5 Egress function

The egress function resides on the workload image and runs on the supplier’s hard-
ware. [t executes upon successful completion of a job and is responsible for taking the
completed work and uploading it to the Cudo platform.

In the case of a parallel job, where a job is split into sub-work packages, the Cudo
platform asynchronously collects uploaded work and then re-combines it to produce the
final result, which is then verified.

5.6 Validation module

A job type’s validation module runs inside the Cudo platform upon a completed work-
load being uploaded to it. Validation comprises the following methods:

Consensus check Consensus in the Cudo platform describes the process of running
a job N times on different suppliers and ensuring that the results are equivalent. This
guarantees that none of the suppliers are faking work. The cost to a consumer increases
by a factor of N with respect to a job that does not use consensus.

Job type-specific check These are defined per job type. Possible examples include:

Time based If the job has an estimation function and the actual time to complete
is significantly lower, the job can be considered failed. If the job was split into equal
sized chunks and the job type creator specifies that they expect each chunk to be equally
computationally intensive, a sub-job can be considered failed if it finished significantly
faster than the others while running on similar hardware.

Hash validation A workload can be designed so that it includes a hash represent-
ing the expected output. This hash can then be compared with the provided results, to
ensure that the full workload has been completed. This type of validation is relevant
for test workloads for example.

Custom validator A custom validator can be written by the developer which
can be used to validate their own workloads. These can be set to either validate all
or some of the workload results. These validators normally run before the workload is
committed as a pre-test to ensure the validations are correct.

Security level Workloads which are not tolerant to incorrect data or tampering can
be raised to a higher security level. These workloads can be prevented from running on
the lowest level of devices which are anonymous. The primary workload can be run on
a high security level such as ISO 27001. For further validation, if the data is non-private
data, consensus validation can also be run at a low cost on the lowest level of devices.

6 Job life cycle

The life cycle of a job is the process between the consumer pushing a job to the platform
and the completed work being delivered to the consumer. This process is depicted in
figure 2. The flow can be described as follows:

provide ingress data

an app
engine

select priority, geography, Elegibility/

E—

optional

sub-job

consensus ... Constraints .
/ Synt hesis

-
o
ery
,q/‘l—\ Scheduler
N

b '
Performance Nl " e
engine RN J
J

Cudo compute | payment | Transaction
. D — .
Client engine

N
Reputation
- engine “_/ l

l complete payment

query

911%/

SUPPLIER

ositive /negative -
. fooc{bacgk Validator

Figure 2: Diagram showing the complete life cycle of a job with a single work
package in the Cudo platform. The process comprises the following steps: con-
sumers with a job that needs to be computed go to the marketplace and choose
an app to submit their job. The expected price range for this job is estimated
by the ingestion engine. This job is matched with the desired constraints of
the consumer, and is divided into multiple work packages where possible (the
diagram illustrates a single work package for simplicity). Once the packages
are created and characterised, the scheduler queries the different engines (rep-
utation, transaction, eligibility constraints and staking) for availability on the
network, decides where each package should be sent and submits them to the
relevant Cudo compute clients. Once the jobs are returned, they are validated
and the reputation of each supplier is updated. If the output is trusted, the
consumer receives it and the supplier is paid for the work done.

10

1. A consumer pushes a job to the platform either via an app or directly via their
OWIl Process.

2. Ingress data is used by the ingestion engine to create a workload image.

3. As each supplier becomes available, the Cudo platform checks eligibility con-
straints, reputation, stake and profitability to determine if the supplier can perform
the workload.

4. Once suitable suppliers are found, the consumer is committed to pay for the work
and the scheduler assigns jobs to the suppliers.

5. Once the work is complete, the completed work is uploaded to Cudo and handled
by the egress function.

6. The validator is run and if the work is deemed acceptable, the transaction is
finalised and the completed work returned to the consumer.

7 Error handling

Jobs can fail for several reasons, which the Cudo platform catches and handles. The
main failure types are:

Timeout If a supplier starts a job and the job is not completed within a certain
length of time, then is treated as a timeout. In this case the job is rescheduled with
a second supplier and the reputation of the first supplier is adjusted accordingly. The
first supplier’s stake is not slashed.

Malicious When a supplier submits fake work in order to game the system and Cudo
recognises this, the work is treated as malicious. In this case the job is rescheduled
with a second supplier and the reputation of the first supplier is adjusted accordingly.
Additionally Cudo may slash the stake of the supplier if it is certain that the failure
was malicious and not accidental. For more details of the staking/slashing mechanism
see section 9.

Consumer complaint In a situation where work has been delivered to the consumer
and the consumer complains to Cudo that there is a problem with the output, the
job goes to an internal dispute resolution process. Depending on the circumstances,
Cudo may handle this by various means including running a consensus check, manually
running the job or a technical investigation into the work image. Depending on the result
of this process, Cudo may opt to undertake any of the following actions: reschedule the
work, penalise the supplier or refund the consumer. The system is designed to minimise
the number of such incidents.

8 Security and reputation

Consumers, particularly at enterprise level, cite security as an important factor for not
using decentralised computing for their processing needs [21]. The Cudo platform is
designed to address security concerns from a number of angles:

o Trusted execution environments (Intel SGX [22] / AMD SEV [23])

e Transport encryption

11

e Encryption at rest
e Security certified data centers
« Data center verification.
These are offered to consumers as constraints which they can select while ordering a

job. Additionally, each supplier has a reputation level which exists as an internal metric
in the Cudo platform.

8.1 Life cycle of an SGX/SEV-enabled job

Upon request, the Cudo API starts an SGX or SEV enabled job. While any job can
benefit from encryption in transit and at rest when sending data to and from the storage
layer, these secure technologies provided by Intel and AMD increase the security of a
workload by running them in a secure enclave within the supplier’s hardware.

Worker
Consumer Cudo API Storage EUntrusted Trusted
- worker worker
E‘ . --------------
i © B C
upload

encrypted in transit
upload

>

encrypted

ncrypted in transit
encrypted in transi at Test

start job

start job

init

. . generate
) . > . attestation
< attestation report © report

\/

. attestation report

download url

: work
< : fetch :

send .
encrypted in:transit

upload result

<
<

finished

fetch

result

result

Figure 3: Life cycle of a secure job in the Cudo compute platform. A consumer
uploads their workload, which is encrypted in transit on its way to the storage
layer, where it is encrypted at rest. Simultaneously, the Cudo API sends a
request to the selected worker to start a secure enclave, and does not send the
download URL until after the enclave has been verified. Following verification,
the data is securely sent from the storage layer to the enclave, which performs
the work. The result is then sent back to the consumer.

12

To ensure that the enclave is created correctly and that no data tempering is de-
tected, these technologies generate attestation reports on the supplier’s hardware, as
shown in figure 3. We refer to the official documentation for a detailed explanation of
SGX [24] and SEV [25], and to the relevant academic literature for ongoing research
around these technologies (see, for instance, [26]).

8.2 Reputation system

In order to be part of the network, a supplier requires reputation. The more reputation,
the more jobs and priority the machines of that supplier will have in the network.
Increased reputation may also imply increased trust in these machines subject to a
sufficient period of validated job submissions to the network.

The reputation of the suppliers may be used as a metric by consumers in order to
decide which machines will receive their jobs. Thus, building reputation is a method
through which suppliers can ensure they receive the most profitable jobs.

Cudo reputation is a tier system ranking different suppliers by popularity and work
history. Entry-level consumers are tier 0, with some base reputation. This reputation is
increased gradually by successfully accepting and completing jobs, and for successfully
passing any tests received.

Once a supplier has accumulated enough reputation, that supplier rises to a higher
tier, granting access to higher priority and better paid jobs, .e. jobs that are required
to be finished fast.

A given supplier’s reputation is calculated as a weighted sum over functions of various
different factors. These factors may change for different tiers. For example, for tier 1
and above, the number of computers that the supplier is sharing with the network may
be included.

Suppliers who have recently joined the network may not all start at tier 0, as there are
other relevant factors considered by the reputation system such as security certificates.
Namely, the SAS 70 standard for the US and the UK, or ISO 27001 for the EU, grant
suppliers access to a higher tier.

Secure hardware like Intel SGX or AMD SEV also affects reputation scoring. Suppli-
ers with secure hardware are rewarded with increased reputation, subject to successful
job completion, and this increased security may also be a constraint which consumers
sending jobs can demand for the hardware on which their job will run.

Various secondary factors are also taken into account in the reputation system. While
some of these may be used as a separate metric to allow consumers a more precise
selection of hardware (or to keep it to a certain location), such as security certificates
for storage, there are others applied at the top supplier level that are not specific to a
single piece of hardware or location.

For instance, platform incorporates (and takes into account in the reputation system)
verification processes via third parties, such as Know Your Customer (KYC) and Anti-
Money Laundering (AML).

The total reputation is bounded within each tier and also applied overall, with certain
conditions and values required to change tiers. The amount of successful results received
by the result validator for a given supplier to advance a level may also change for each
tier. Factors involved in reputation calculation include:

e Success rate of test jobs

e Success rate of completed jobs

13

Tier Description
5 Banned from compute. Suppliers can perform mining only
with the option to go back to tier -1 after an approval process.
1 Can be reached by either faking jobs or failing jobs repeatedly.
Suppliers receive only mining tasks and compute test jobs.
0 Default entry level tier for suppliers with no security credentials.
Suppliers receive compute tasks containing only public data.
Suppliers who have been at tier 0 for a certain period of time
1 while successfully completing compute work. Eligible to receive jobs
containing private data which is not sensitive.
2 Suppliers which have completed Know Your Customer (KYC).
2.5 Data centers without any certificate.
3 Data centers with an acceptable security certificate.

Table 4: Table showing the different tiers in the Cudo reputation system. Users
with no initial staking enter at tier 0 with some base reputation, and can either
increase tiers by completing jobs and providing KYC/security certificates or
fall to negative tiers if they behave maliciously on the network.

o Amount of time positively contributing to the network
e Number of computers provided

e Number of CUDOS tokens staked in the past.

Negative tiers are included, for instance tier -1, for suppliers who are consistently ma-
licious. Suppliers in these negative tiers are not able to receive compute jobs, but they
are still able to mine and return to tier 0 by, for instance, successfully returning test
jobs.

Where relevant, a tier -2 class may also be incorporated. In this class, suppliers are
permanently restricted to mining cryptocurrency and do not receive compute jobs at
all until further notice. See table 4 for a summary of all internal tiers.

9 Cudo’s compute platform blockchain side

Creating a fully decentralised blockchain-based service that can compete with exist-
ing cloud computing platforms is challenging, as the current generation of blockchain
solutions are not viable for the majority of modern workloads. Furthermore, Cudo is
initially separating its cloud solution, which has been described up until now, from a
purely blockchain part, the CUDOS network, which is explained in detail in section 12.
While the way both connect is outlined in section 13, the cloud side of the Cudo plat-
form initially allows for some blockchain integration, to add transparency and security.
As a result, Cudo initially employs a hybrid approach in which much of the business

14

logic runs centrally on Cudo servers, with smart contracts used for specific functions

related to the CUDOS token. The platform and service have been designed in such a

way as to minimise the friction of moving to a full blockchain solution in the future.
Initially there are two relevant smart contracts for the cloud compute platform:

Token contract (ERC20) The CUDOS token is a standard ERC20 token contract
on the public Ethereum blockchain.

Staking contract As detailed further in section 11, suppliers may stake tokens for
two reasons:

1. In order to qualify for running jobs. The stake acts as a deposit to help prevent
abuse on the platform.

2. To obtain a discount in fees from the discount pool (see section 11).
Tokens can be staked by suppliers in two ways:

1. A portion of a suppliers’ earnings can be converted to CUDOS and staked auto-
matically by the Cudo platform to qualify them for higher value jobs over time.
This is configurable by the supplier.

2. Tokens manually staked by sending CUDOS to the contract by a supplier.

10 Pricing engine

Pricing for Cudo compute jobs is based on mining revenue. Grouping hardware in
reasonable ranges, Cudo proposes pricing to suppliers, which is three to four times their
mining revenue. Note however that Cudo only proposes a price; suppliers are free to
set their own pricing.

Consumers are able to hire the supplier’s hardware to run their jobs as Virtual
Machines (VMs). Consumers are able to choose between high and low priority VMs,
similar to spot instances or preemptible VMs in other cloud supplier platforms. Both are
billed at a variable rate according to the prevailing market conditions, unless consumers
buy a pricing commitment.

Pricing commitments guarantee fixed-rate pricing for a fixed term. By choosing a
commitment term, a predefined machine type and the payment plan consumers obtain
a discount on job pricing. The pricing engine creates the hardware ranges described
above and recommends a price for each piece of hardware. Note that a single supplier
may own multiple pieces of hardware, thus the contract is for the hardware piece rather
than the supplier’s entire array of devices.

11 Cudo token: CUDOS

The CUDOS token has utility in the Cudo distributed compute platform in the following
ways:

1. Staking to receive a discount in fees

2. Staking to qualify for jobs.

15

In the future, more uses for the token will be explored for the cloud offering, including
as a medium of exchange (using a scalable low-gas solution such as payment channels
[27]) and further benefits for consumers such as inexpensive cross-border remittance.

Notice that the CUDOS token has further utility as the backbone that powers the
CUDOS network, which is discussed in section 12. The details about the added utility
and functionality of the token for the CUDOS network, including delegated staking, are
deferred until that section, and this section is focused on the use of the token within
the Cudo cloud computing platform.

11.1 Staking to receive a discount in fees

The CUDOS token utilises a discount token model based on a staking mechanism, where
a fixed percentage of the total fee revenue generated on the Cudo network is distributed
to suppliers. This discount is based on the fees paid by each supplier on the network
and the amount of CUDOS each supplier has staked.

In order to receive higher discounts, suppliers can:

1. Stake the relevant number of tokens required, until the discount equals the maxi-
mum discount available (a percentage of the fees), and

2. Generate as much revenue as possible on the platform so as to increase the maxi-
mum discount available.

This model is based on a staking mechanism in the Sweetbridge protocol [28].

The discount received by suppliers is obtained by dividing the amount of capital
available to be distributed in discounts in a given staking round (discount pool) by the
number of tokens that participate in the round (token supply) and multiplied by the
number of tokens staked. To be more precise, consider the following definitions,

DP: Discount Pool. A portion of Cudo Ventures’ fee revenue contributed to
discounts in a given period of time (every week, month, etc).

R: Discount Rate. A percentage of revenues that Cudo Ventures is contributing
to DP, and the maximum percentage discount suppliers can get. This can be a
fixed value, say 50%, or a variable determined by a formula.

Cr: Cudo Ventures’ fee revenues in a given period.

DpT': Discount per Token. A value of discount that suppliers can enjoy for each
token they hold.

N: Multiplier. This can be set by Cudo to increase the discount per token in case
the return on staking is deemed too low. It will always be greater than or equal
to one.

TS: Token Supply. The number of tokens that participate in the distribution
of discounts. This can be a sum total of all the tokens staked for discounts by
suppliers or the total circulating supply of tokens.

M;F: Fees paid by an individual supplier .
T M;: Token supply of an individual supplier ¢ staked for discounts in the period.
M;D: Discount granted to an individual supplier i.

In order to obtain the discount a supplier receives, the discount pool needs to be calcu-
lated first,
DP=R-Cr. (1)

16

The discount per token can then be obtained as

DP

DpT' = N— 2
P 75 (2)
and thus the discount supplier i receives is

M;D = min (DpT - TM;, M;F - R) . (3)

Example This scenario assumes $100M in Cudo revenue (30% of the revenues gener-
ated on the platform), with a 50M locked token supply, a discount rate of 50% (R = 0.5)
and a multiplier N = 1. A supplier (Alice) contributes to the network in a single month
with $100 in revenue by generating compute power as she leaves her computer on every
night.

With the assumptions above, the discount pool (1) is

DP = $100M - 50% = $50M (4)
and the discount per token (2) is

$50M

Dpf = ————
p 50M tokens

= $1 per token. (5)

If Alice sells $100 worth of compute, her payable fees are $30 ($100 - 0.3) in a given
month. If she holds between 0 and 15 tokens, the discount in the fees is between 0 and
50% respectively, given that the discount per token is $1 (the discount is capped at $15
as the discount rate is 50% and the fees paid are $30, see formula (3)). By staking,
Alice saves up to $15 in fees that month.

Suppose now that Alice holds more than 15 tokens. Since her discount is capped
at $15, or 50% of her fees (15% of the total money earned), she still receives the same
discount as if she had 15 tokens. In this case, assuming she has for instance 10 extra
tokens than the ones necessary to obtain the full discount (25 tokens in total), she has
several options to choose from:

1. Keep the tokens in her wallet.
2. Sell 10 tokens on the market at the current price.

3. Allocate more computing power to the network. Putting more computing power
online effectively increases the maximum discount Alice can get. This is because
as the contribution to the network increases, so does the discount a supplier can
get.

4. Exchange the extra tokens for additional services. For example, gamers could
choose to buy Steam vouchers and other supported assets with CUDOS natively
on the platform.

In any case, the discount that Alice receives is given by equation (3), and so in this case
it is

M; D = min (number of tokens staked - $1,$15) . (6)

17

11.2 Staking to qualify for jobs

The CUDOS token utilises a staking/slashing mechanism, where in order to qualify for
a given job the supplier may need to have staked CUDOS tokens. This model serves
to discourage malicious behaviour such as submitting fake work in order to game the
System.

The slashing mechanism is executed when the supplier acts maliciously, but not
when a job fails due to non-malicious reasons, such as a timeout (which may be due to
a power cut or disconnected network, for example). The slashing mechanism is enforced
automatically under the following conditions:

1. The workload is completed and uploaded to the Cudo platform.
2. The Cudo platform executes the job type’s validation module and either

(a) A consensus check fails, or

(b) A job-type specific validation check fails which proves malicious behaviour, for
example:

i. The workload was completed with significantly less work than the estima-
tion.

ii. The workload was completed with significantly less work than the other
suppliers in the consensus check.

iii. An algorithmic check to verify the output data fails.

Additionally, Cudo may opt to slash stake in extreme, manually verified situations such
as when a supplier is proved to be using hacked devices. If the job fails and the slashing
mechanism is executed, the staking smart contract retains an amount of staked tokens
equivalent to the total required for that job.

11.3 Staking mechanism

CUDOS tokens are staked in the staking contract. Optionally, a supplier may opt to
automatically stake a portion of their earnings as CUDOS tokens, such that they qualify
for a larger discount. Over time, they may stake sufficient tokens to qualify for higher-
value jobs that their increasing reputation would allow for. This process is transparent
to the supplier and only a small proportion of their earnings need to be staked in order
to significantly increase the value of their jobs over time.

No initial staking is required to participate in Cudo’s compute platform — the initial
amount of CUDOS needed to accept a user’s first compute jobs can be earned through
mining jobs upon installing the Cudo platform.

12 CUDOS network

The previous section has introduced the CUDOS token, and has focused on its utility
for the compute workloads on the Cudo platform. This section introduces and details
the CUDOS network, a separate application aimed at providing a layer 2 network for
blockchains, allowing the off-loading of compute and data to overcome scalability issues.
See section 13 for a description of how the Cudo platform and the CUDOS network are
related.

18

‘ CUDOS node '6375646f'

CUDOS
reques

Juest

Layer 1
network

Layer 1

| CUDOS node | | WebAssembly

blockchain daemon dispatcher executor

Work request: Instance of

{targets identifier, requested app
app hash,

inputs}

Work callback

Figure 5: Sketch of a request triggering a CUDOS workload. A layer 1 smart
contracts requests some work through the CUDOS smart contract, triggering
an event. The CUDOS nodes listen to the contract’s events, and execute the
requested work when they are chosen. After fetching the data and running the
workload, the result is returned to the CUDOS smart contract.

12.1 Overview

Smart contracts written in a layer 1 network can invoke the CUDOS smart contract,
deployed in that same layer 1 network, in order to request work to be computed off-
chain or to access external data. The off-chain computation is done in the CUDOS
nodes, which need to stake 2,000,000 CUDOS in order to be eligible. These nodes are
constantly listening to events in the CUDOS smart contract, to see when a new request
for a compute job is created. This request includes three main components:

o A targets identifier
e An app hash identifier
e Any inputs needed for that workload.

The targets identifier refers to some piece of data that is used by the CUDOS nodes
to decide when they need to run a job. This can either be a set of hashes identifying
each individual node separately, or some unique identifier which the nodes use to decide
whether they need to run the job. More details on this will be given in subsection
12.2.1, and a full overview of the process is shown in figure 5.

The app hash is used in order to decide which code the CUDOS nodes need to run.
That hash can either refer to an existing app from the CUDOS dapp marketplace, or it
can point to an external storage address where some code written by the requester has
been previously uploaded. Last, the request to the CUDOS contract may also include a
list of inputs to be used by the code or app that will run in the nodes. These inputs can
be passed directly in the request, if they are just short numbers or characters, but will
typically be addresses to an external storage solution where the input data has been
uploaded beforehand. In the next subsection more details are given about storage.

Once a node has heard an event and has decided that it should run the work, that
triggers its WebAssembly executor part. Note that listening to the blockchain is already
an off-chain process, so this process is not constrained by the blockchain’s limitations
anymore. Once execution starts, the node will fetch the passed inputs, and will send

19

the relevant API requests to the marketplace and the app in order to run the compute
workload.

After the result is obtained in each CUDOS node, a consensus check might be needed
in order to return a unique result to the original requesting smart contract on the layer
1 blockchain. See subsection 12.2.2 for an explanation of how consensus can be reached
in the CUDOS network. Once that unique result (or address storing the result) has
been decided and sent to the CUDOS smart contract, the original smart contract can
fetch it.

12.2 CUDOS nodes

As has just been described, CUDOS nodes are responsible for listening to the CUDOS
smart contracts and running any workloads when relevant. Initially, all CUDOS nodes
run SEV-ready hardware. AMD’s SEV technology allows the memory contents of a VM
to be transparently encrypted with a key unique to the guest VM. This adds an extra
layer of security and protection to the network, for both the node and the job requester.

In addition to the workloads requested from a blockchain’s smart contract, CUDOS
nodes have constant utilisation. All the hardware not working on the CUDOS network
to provide compute or data to a blockchain runs the Cudo software, in order to ensure
full utilisation and monetisation. As such, part of the technology behind the CUDOS
nodes is shared with that of Cudo’s workers, in order to enhance the integration between
both layers.

12.2.1 Identifying nodes

As mentioned above, initially the CUDOS smart contracts will require the requester
to select which validator nodes need to run the job. However, other selection methods
are currently being investigated in order to increase automation and reduce gas costs,
in the case of layer 1 networks like Ethereum. For example, following [29], one option
would be to deterministically elect workers based on a randomly generated job ID.

12.2.2 Consensus

CUDOS nodes create an off-chain peer-to-peer network, in order to cross-check results,
share data and run validations. This peer-to-peer network may be used for several
things, including the node identification mentioned above. This network may also be
responsible for reaching consensus on specific workloads. Namely, consensus in the
CUDOS network may run in two ways:

e On-chain through a smart contract
e Off-chain in the peer-to-peer validator network.

While the result of some workloads may be simple enough to cheaply run consensus
on-chain, more complex workloads will require custom code for the validation. This
code will either be chosen from the dapp marketplace, or will need to be written by the
requesting blockchain developer.

13 Cudo and CUDOS connection

Sections 2 to 10 in this paper have focused on the Cudo platform, while sections 11 and
12 introduced the CUDOS token and the CUDOS network. As discussed, the CUDOS

20

Layer 3
(Cudo platform)

Layer 2
(CUDOS network) >\
Layer 1 A
(Ethereum, Algorand)

CUDOS
Smart requests i
—reauests —
contract compute smart
contract

Cudo
worker

Figure 6: High-level overview of the integration of the CUDOS network and
the Cudo platform with layer 1 blockchains. Smart contracts from a layer 1
in need of compute or external data may request the layer 2, CUDOS network
services through the CUDOS smart contracts. In turn, if the job has been
required so, the CUDOS nodes may connect to Cudo workers, in order to use
more computing power or specialised hardware, such as high-end GPUs. Thus,
the Cudo platform is effectively a layer 3, providing extra compute to the layer
2.

network is a layer 2 solution for blockchains which require extra compute or external
data. Blockchains like Ethereum have very high gas costs, which make impractical
running complex workloads on them. Other blockchains like Algorand need a layer 2
solution in order to add extra functionality to the platform, through a Turing-complete
network that also provides external data.

While the CUDOS network provides all this required functionality, Cudo Ventures
is going one step further, by seamlessly integrating this technology with the Cudo
platform. As seen throughout this document, the Cudo platform provides cloud-like
services, focusing on low costs, low latency and a high degree of personalisation. Hence,
just like the CUDOS network is a layer added on top of blockchains to provide extra
compute capacity, the Cudo platform can be seen as an extra layer on top of the CUDOS
network, to provide even more on-demand compute capacity. This added capacity might
be needed in order to select different types of hardware, or to request jobs that demand
more resources than the CUDOS network can directly absorb. Figure 6 pictures how
the layers are organised.

As such, the CUDOS smart contracts will provide access to the CUDOS layer 2
and the Cudo layer 3, in order to run any kind of workload on any kind of supported
hardware, for as long as needed. This integration takes blockchains a step further into
mass-adoption, as there will be no limit in the kind of workloads that can be requested

21

through an on-chain smart contract.

14 Summary

Cudo is building two new products: a distributed computing platform that expands its
current cryptocurrency mining platform and the CUDOS network, a layer 2 solution
that provides extra compute and external data to blockchains. Currently Cudo is a
cryptocurrency mining application that mines the most profitable coin for each hard-
ware, and pays out in the user’s choice of the most popular cryptocurrencies. This
application is used to ensure that all Cudo workers and CUDOS nodes have constant
utilisation and remuneration, even when market demand for compute jobs goes down.

In the CUDOS network, nodes get rewarded by their contribution to the network,
which is twofold: running workloads requested from the CUDOS smart contracts and
maintaining the ecosystem by being an active node. Similarly, all users can support
the nodes, by delegating their stake to their favourite CUDOS node. This allows for
an active and extensive network that powers and pushes forward the boundaries of the
current blockchain technology and DeFi, by enabling extra functionalities which are
only possible with compute-intensive work and external data.

On the Cudo platform side, the software benchmarks all the hardware connected
to the platform, and records the real world capacity in order to distribute workloads
efficiently. This benchmarking includes GPU, CPU, memory, storage and networking
capabilities, as the platform will support workloads incorporating all of these resources
in the future. Based on these capabilities, the Cudo platform determines the most
profitable task for each hardware, and switches automatically to cryptocurrency mining
when no distributed computing workloads are available or profitable. Jobs can be sent
to Cudo compute through job-specific applications, discovered through a marketplace
where developers are rewarded for creating apps that facilitate this task. Consumers
are also free to send their own custom compute workloads. In addition, Cudo compute
sends test workloads which are part of the benchmarking process.

Internally, the Cudo platform has different engines which accept, prepare, schedule,
distribute, validate and return the different workloads, as well as manage all payments.
The distribution of jobs is partly based on a reputation model, which determines the
levels o security and of confidence in individual hardware suppliers. This reputation
model is a tiered system which restricts malicious users to cryptocurrency mining only.

Suppliers can be entitled to discounts on the fees they pay on the platform, provided
they stake enough CUDOS, an ERC20 token. Staking not only leads to discounts, but
acts as a deposit to prevent abuse. The minimum stake needed to participate in the
compute network may be obtained by completing mining jobs.

While Cudo compute provides recommended pricing to hire computing power, sup-
pliers are free to change and tune the pricing according to different metrics. For instance,
they can set the price at a certain percentage above mining revenue, or as a percentage
above the expected electricity costs. All these options come with a user-friendly inter-
face, in line with all of Cudo’s existing applications. Hardware suppliers are also free
to turn off mining altogether, and only receive distributed computing workloads.

22

References

[12]

Synergy Research Group. Hyperscale data center count jumps to 430; another 132
in the pipeline. srgresearch.com.

Becky Peterson. Companies waste $62 billion on the cloud by paying for capacity
they don’t need, according to a report. businessinsider.com.

Roddy Scheer and Doug Moss. How clean is the energy used by tech companies
for cloud computing? scientificamerican.com.

Louis Columbus. Public cloud soaring to $331b by 2022 according to gartner.
forbes.com.

Susan Platt. Metamorphosis of an industry, part two: Moore’s law and dennard
scaling. micron.com.

Richard Bradley. Blockchain explained... in under 100 words. deloitte.com/
blockchain-explained.

Niall McCarthy. Bitcoin devours more electricity than switzerland. forbes.com/
bitcoin-devours-more-electricity-than-switzerland-infographic.

Ethereum 2.0. ethereum.org/eth2.

Kirsten Richard. Polkadot and cosmos. wiki.polkadot.network/
learn-comparisons—cosmos.

Statista. Shipment forecast of laptops, desktop pcs and tablets worldwide from
2010 to 2023 (in million units). statista.com.

Statista. Number of smartphone users worldwide from 2014 to 2020 (in billions).
statista.com.

Statista. Number of tablet users worldwide from 2013 to 2021 (in billions).
statista.com.

Louis-Benoit Desroches et. al. Computer usage and national energy consump-
tion:results from a field-metering study. eta.1lbl.gov.

Airbnb. airbnb.co.uk.

Blablacar. blablacar.co.uk.

Worldwide LHC computing grid. wlcg.web.cern.ch.
LHC@home. lhcathome.web.cern.ch.

SETI@Qhome. setiathome.berkeley.edu.

Cudo Ventures. CUDOS. Next Generation Cloud. Whitepaper. cudos.org/
whitepaper.

Kubernetes home page. kubernetes.io.

André Miiller, André Ludwig, and Bogdan Franczyk. Data security in decentral-
ized cloud systems — system comparison, requirements analysis and organizational
levels. Journal of Cloud Computing, 6, 12 2017.

Intel software guard extensions. software.intel.com.

Amd secure encrypted virtualization. developer.amd. com.

Intel® 64 and ia-32 architectures software developer’s manual: 3d.
IntelSoftwareDeveloper’sManual.

23

https://www.srgresearch.com/articles/hyperscale-data-center-count-jumps-430-mark-us-still-accounts-40
https://www.businessinsider.com/companies-waste-62-billion-on-the-cloud-by-paying-for-storage-they-dont-need-according-to-a-report-2017-11?r=US&IR=T
https://www.scientificamerican.com/article/cloud-computings-substantial-footprint/?redirect=1
https://www.forbes.com/sites/louiscolumbus/2019/04/07/public-cloud-soaring-to-331b-by-2022-according-to-gartner/#1fd7aece5739
https://www.micron.com/about/blog/2018/october/metamorphosis-of-an-industry-part-two-moores-law
https://www2.deloitte.com/ch/en/pages/strategy-operations/articles/blockchain-explained.html
https://www2.deloitte.com/ch/en/pages/strategy-operations/articles/blockchain-explained.html
https://www.forbes.com/sites/niallmccarthy/2019/07/08/bitcoin-devours-more-electricity-than-switzerland-infographic/#52b4ff4b21c0
https://www.forbes.com/sites/niallmccarthy/2019/07/08/bitcoin-devours-more-electricity-than-switzerland-infographic/#52b4ff4b21c0
https://ethereum.org/en/eth2/
https://wiki.polkadot.network/docs/en/learn-comparisons-cosmos
https://wiki.polkadot.network/docs/en/learn-comparisons-cosmos
https://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/377977/tablet-users-worldwide-forecast/
https://eta.lbl.gov/sites/default/files/publications/computers_lbnl_report_v4.pdf
https://www.airbnb.co.uk
https://www.blablacar.co.uk
http://wlcg.web.cern.ch
http://lhcathome.web.cern.ch
https://setiathome.berkeley.edu/
https://www.cudos.org/whitepaper
https://www.cudos.org/whitepaper
https://kubernetes.io/
https://software.intel.com/en-us/sgx
https://developer.amd.com/sev/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.html

[25] Amd64 architecture programmer’s manual volume 2: System programming.
AMDtechdoc.

[26] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai, and Raluca Ada Popa. An
off-chip attack on hardware enclaves via the memory bus, 2019.

[27] Jim McDonald. Introduction to ethereum payment channels. medium. com.

[28] J. Scott Nelson, David Henderson, Glenn Jones, Micha Roon, Michael Zargham,
Aleksandr Bulkin, Jake Brukhman, and Kenny Rowe. Sweetbridge: a blockchain-
based protocol stack for global commerce and supply chains. Sweetbridge, 2018.

[29] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah
Dylan Hosein. Maglev: A Fast and Reliable Software Network Load Balancer.
Proceedings of the 13th USENIX Symposium on Networked Systems Design and
Implementation, 2016.

24

https://www.amd.com/system/files/TechDocs/24593.pdf
https://medium.com/@jgm.orinoco/introduction-to-ethereum-payment-channels-a16fbe1a7181
https://sweetbridge.com/assets/docs/Sweetbridge-Whitepaper-20180529.pdf
https://sweetbridge.com/assets/docs/Sweetbridge-Whitepaper-20180529.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44824.pdf

	Introduction
	Cloud platform overview
	First class entities
	Platform components

	Current Cudo product
	Benchmarking and scheduling
	Compute workload types
	Apps
	Custom compute workloads
	Test workloads
	Ingest function
	Egress function
	Validation module

	Job life cycle
	Error handling
	Security and reputation
	Life cycle of an SGX/SEV-enabled job
	Reputation system

	Cudo's compute platform blockchain side
	Pricing engine
	Cudo token: CUDOS
	Staking to receive a discount in fees
	Staking to qualify for jobs
	Staking mechanism

	CUDOS network
	Overview
	CUDOS nodes
	Identifying nodes
	Consensus

	Cudo and CUDOS connection
	Summary

